San Bernardino Valley College

Course Outline for ELECTR 155 ELECTRONIC DRAWING AND ASSEMBLY

I. CATALOG DESCRIPTION:

Department: Electricity/Electronics ELECTR 155: Electronic Drawing and Assembly 2 hours lecture, 3 hours laboratory = 3 Units **Catalog Description:** Skill in interpreting and creating electronic drawings, circuit board construction and assembly. Emphasis on drawings, soldering, assembly and fundamentals of CAD. **Schedule Description:** Skill in interpreting and creating electronic drawings, circuit board construction and assembly. Emphasis on drawings, soldering, assembly and fundamentals of CAD. **Prerequisite/corequisite:** None

II. NUMBER OF TIMES COURSE MAY BE TAKEN FOR CREDIT: One

III. EXPECTED OUTCOMES FOR STUDENTS:

Upon completion of the course, students will be able to:

- A. Identify and draw electronics circuits using a graphics template, logic template, and a circle template.
- B. Explain the purpose and function of the following:
 - 1. Block diagrams
 - 2. Control drawings
 - 3. Printed circuit boards
 - 4. Logic diagrams
 - 5. Schematic diagrams
 - 6. Interconnection diagrams
 - 7. Wiring diagrams
- C. Lay out a simple block diagram showing conventional and auxiliary flow paths.
- D. State the six fundamental rules for dimensioning.
- E. Identify ten kinds of lines used on electronic and electromechanical drawings.
- F. Identify the elements of computer-aided-drafting system.
- G. Identify the differences in the three types of control drawings.
- H. Identify component value information and component sequence numbers on schematic diagrams.
- I. Identify the three standard integrated circuit packages.
- J. Describe the characteristics of the point-to-point, highway, and tabular types of wiring diagrams.
- K. Calculate the total developed length for parts with a 90-degree bend and greater than 90-degree bends.

- IV. CONTENT:
 - A. Technical Graphics Practices
 - 1. Introduction
 - 2. Current practices
 - 3. Tools and equipment
 - 4. The drawing medium
 - 5. Lettering and drafting techniques
 - 6. The freehand sketch
 - 7. The projection drawing
 - 8. Dimensioning
 - B. The Electronic Component
 - 1. Purpose and function
 - 2. Types of electrical components
 - 3. Summary
 - C. The Block Diagram
 - 1. Purpose and function
 - 2. Graphic symbols
 - 3. Information flow
 - 4. Line convention
 - 5. Size and shape of blocks
 - 6. Lettering
 - 7. Method for drawing the block diagram
 - D. The Control Drawing
 - 1. Purpose and function
 - 2. Types of control drawings
 - 3. Drawing preparation
 - E. The Logic Diagram
 - 1. Purpose and function
 - 2. Types of logic diagrams
 - 3. Logic states
 - 4. Symbol presentation techniques
 - 5. Tagging lines
 - 6. Function identification letter combinations
 - 7. Signal flow
 - 8. Method for drawing the logic diagram
 - F. The Schematic Diagram
 - 1. Purpose and function
 - 2. Graphic symbols
 - 3. Conductor paths
 - 4. Reference designations
 - 5. Component values
 - 6. Method for drawing the schematic diagram
 - G. The Printed Circuit Board
 - 1. Purpose and function
 - 2. Types of PCBs
 - 3. The PCB component layout

- 4. PCB component layout review
- 5. The PCB artwork drawing
- 6. Artwork drawing review
- 7. The PCB drawing detail drawing
- 8. The PCB marketing drawing
- 9. The PCB assembly drawing
- H. The Integrated Circuit
 - 1. Types of ICs
 - 2. Standard IC packages
 - 3. IC design
 - 4. Integrating the monolithic transistor
- I. The Interconnection Diagram
 - 1. Types of interconnection diagrams
 - 2. Layout of the interconnection diagram
 - 3. Method for drawing the interconnection diagram
- J. The Connection Diagram
 - 1. The wiring diagram
 - 2. The cable assembly drawing
 - 3. The wiring harness diagram
- K. Electromechanical Packaging
 - 1. Designer/drafter responsibilities
 - 2. Types of equipment enclosures
 - 3. Designing sheet metal parts
 - 4. Fastening methods
 - 5. The unthreaded fastener
 - 6. Method for developing an electromechanical package
- V. METHODS OF INSTRUCTION:

Methods of instruction will vary from instructor to instructor but may include:

- A. Lecture
- B. Videos and transparencies and class discussion
- C. Filmstrips on drafting technique

VI. TYPICAL ASSIGNMENTS:

Typical assignments will vary from instructor to instructor but may include:

- A. Lay out a simple block diagram showing conventional and auxiliary flow paths.
- B. Draw electronics circuits using a graphics template, logic template, and a circle template.
- C. Calculate the total developed length for parts with a 90-degree bend and greater than 90-degree bends.
- VII. EVALUATION(S):
 - A. Methods of evaluation will vary from instructor to instructor but may include:
 - 1. Quizzes
 - 2. Twenty-five Assigned Drawings
 - B. Frequency of evaluation will vary from instructor to instructor but may include:

- 1. Quizzes
- 2. Final exam
 - Typical Questions:
 - a. Define "dimension".
 - b. Identify the three standard integrated circuit packages.
- VIII. TYPICAL TEXT(S):

Maruggi. <u>Technical Graphics: Electronic Work Text</u>, 2nd Edition. Merrill Publishing, 1995.

IX. OTHER SUPPLIES REQUIRED OF STUDENTS: Drafting packet with appropriate tools